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A Perturbation Method for the Analysis of Wave
Propagation in Inhomogeneous Dielectric
Waveguides with Perturbed Media

MASAHIRO HASHIMOTO, MEMBER, IEEE

Abstract—This paper presents a perturbation method for determining
the modes and the propagation constants of TE and TM waves in in-
homogeneous dielectric waveguides whose index distributions depart
from well-known profiles; e.g., a parabolic profile for which exact
solutions can be obtained. Applying the variable-transformation tech-
nique to the wave equations, the wave-equation problem is transformed
into the related-equation problem. The approximate solutions of the
wave equations are obtained solving the related equation. The method
is applied to the analysis of lower order mode propagation in a near-
parabolic-index medium. The first-order field functions and the second-
order propagation constants are given. '

I. INTRODUCTION

HE PROBLEM of studying the behavior of electro-

magnetic waves in inhomogeneous media has been of
great interest chiefly from mathematical and physical
standpoints [1]-[6]. Later a number of methods [7]-[10]
were developed to analyze this problem or the equivalent
quantum-mechanics problem, most of which are based on
the asymptotic expansion method [11] analogous to the
Wentzel [3]-Kramers [6]-Brillouin [4], [5] (WKB)
method, and these methods have been found to be very
useful for weak inhomogeneities.
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Recently, a great variety of refractive-index distributions
were used to realize self-focusing optical waveguides. Some
of these distributions are not weakly inhomogeneous; the
index variations within the distance of a wavelength are
relatively rapid. In applying such media to single or quasi-
single mode waveguides, it is necessary to analyze the
propagation characteristics of lower order modes by
suitable methods.

Kurtz and Streifer [8] have applied McKelvey’s asymp-
totic method [7] to the problem of lower order mode
propagation, and have found the solutions inaccurate
near the center axis of the waveguide. Even if higher order
asymptotic approaches are taken into account, it is im-
possible to improve the accuracy of the solutions near the
center axis [11]. To avoid this defect, many authors [12]
have used the variational method with the aid of a com-
puter. However, computational labor will be required for
the straightforward calculations [13], [14].

In this paper, an analytic method is presented to deter-
mine the transverse field functions and the propagation
constants of TE and TM waves subjected to lower order
mode propagation in inhomogeneous media. The method
is based on two techniques. The one is the variable-trans-
formation technique initially presented in nonuniform
transmission-line problems by Berger [15] and later trans-
ferred to the equivalence problem of lenslike media by
Yamamoto and Makimoto [16]. The other is the related
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equation technique developed in physics and mathematics
by Wentzel [3], Gardner et al. [17], and McKelvey [7].

The wave equations for TE and TM waves are trans-
formed into a related equation by introducing a new
variable. The solutions of the wave equations are obtained
solving the related equation with suitable approximations.
The method is applied to the analysis of wave propagation
in a near parabolic-index medium. The transverse field
distributions and the propagation constants are calculated
by first-order and second-order approximations, res-
pectively. The results are discussed in comparison with
those obtained by the WKB method and the variational
method.

1. WAVE EQuaTIONS FOR TE AND TM WAVES

The inhomogeneous dielectric wavegunide to be analyzed
is two dimensional. The refractive index of the medium
varies only in the transverse direction x, as n(x); n(x) is an
even function of x. The waves propagate along the z
direction and the field variation in the { direction is as-
sumed to be uniform where (x,{,z) is a Cartesian coordinate
system. The field components of TE and TM waves can be
expressed in terms of the electric field E; and the magnetic
_ field H,, respectively. The wave equations that E, and H,
obey are [18] '

{0?|ox* + 8*[0z* + ko*n*(x)}E, = 0,  for TE waves
| )
{0%)0x* + 0%[0z% + ko*n*(x) — n()[1/n(x)]"}

{H/n(x)} =0,

where k, is the wavenumber in free space and primes
denote differentiation with respect to x.

We assume the phase variation e =7 for nth mode
(n = 0,1,2,---) where B, is the propagation constant.
Furthermore, we define

b, = {1 - (ﬁnl/k)za
"L = (Bu/k)? = (ol kH[1/n(¥)]i=0

for TM waves (2)

for TE waves
for TM waves

3)

1 — [n(x)/ny]?, for TE waves

x1(x) = {1 — [n(x)/no]? + [n(x)/k*I[1/n(x)]"
— (no/kH)[1/n(x)]s=0» for TM waves (4)

E,
H{/n(x):

for TE waves

= JBr1z =
Pui(x)e - { for TM waves.

(5)
Here, n, is the refractive index at the z axis (= n(0)), k is
the wavenumber at the z axis (= kghp), and x,(x) is a
function of x satisfying y,(0) = 0.

Using these quantities, both of the wave equations are

written in the same form
@,,"(x) + k*[bpy — £:(x)]®,,(x) = O. ()

Hence we need only solve this simplified equation subject
to the boundary condition at infinity; i.e., ®,,(+ o) = 0.
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n{x)

0} X
Fig. 1. Index profile. Perturbed. = ~~ == = =~ = Unperturbed.
Y
m=3 2
1
o X

Fig. 2. A sketch of variable perturbation for xo(x) = (gx)® and
Ax(x) = a(gx)?™; « and g constants, Ax(x) = x1(x) — xo(X).

IT1. VARIABLE PERTURBATION

For special cases when the refractive-index profile has,
for instance, a parabolic shape or a step shape, the rigorous
solutions of (6) can be obtained analytically. We now write
such solutions as @,,(x). The subscript 0 indicates that the
index distribution is in the particular state where the
propagation constants and the transverse field functions
are known. This particular state is chosen to be an un-
perturbed state in the present perturbation problem (see
Fig. 1). The unperturbed equation corresponding to (6) is

D,0"(x) + k*[bro — Xo()]Ppo(x) = 0. M

For practical cases of interest, the oscillatory behaviors
of the perturbed fields are probably similar to those of the
unperturbed fields. We thus assume the perturbed field
function ®,,(x) in the form*

D,y (x) = [dy(x)/dx]™ 2Dy y(x)] ®

where the new variable y introduced is a function of x
(= y(x)).

The aspect of y(x) is sketched in Fig. 2; y(x) is, in general,
an odd function of x approximately proportional to x.

1 The factor (dy/dx)~1/2 was taken so that the first derivative of
®,0 might be removed in (9).
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The deviation of y(x) from x is caused by the perturbation.
To inspect such a deviation, we first substitute (8) into (6)
using the differential formula

d*ldx* + k*[b,y — x,(x)]
= (dx/dy)™*{0*/0y* — [(d*x|dy®)[(dx/dy)] 8[oy
+ K*(dx[dy)*[byy — (0]}
Then
D,,"(») + {x"2x — 3(x"[x)* /4 + K2x'?

[on — 1P () =0 )
where the primes denote differentiation with respect to
¥ (x = x(»)). The first derivative of ®,4(y) does not appear

in (9). This is the reason why we must place, in (8), the
factor

(dy/dx)™'* in front of @[ y(x)].
In the second step, the variable x of (7) is merely replaced

by y, and the resulting equation is compared with (9).
Then we obtain the nonlinear differential equation

Kby — o[y} = Kx 'Z{bnl — 0@} = V¥ ANy
(109)

where the relation x”/2x’ — 3(x"/x')?/4 = —Jx (1/\/ x'y’

is used. Alternatively, one may write (10) as

K2 {bao = 1o[9112 = Kb = 100} + VY ANYY"
€8))

This is the related equation to be solved instead of the wave

equations.

In the next section, we present several approaches for
(11). For the sake of clarity, the application is restricted to
a near parabolic type of profile. The formulation presented
there is, however, applicable to the general classes of index
distribution.

IV. APPLICATION
We apply the method to the near parabolic-index medium

: 2 4
n(x) = n, \/ 1- (i‘) — ad? (i‘) (12)
a a
where J, a, and « are constants.
From (3), the propagation constants are defined as
By = {k\/l — by, for TE waves
k1 — b, — 8/(ka)?,  for TM waves. (13)
Also from (4)
2(x) = (92)° + a(gx)* (14)
where g is defined as
\/—5, for TE waves
NG e |
—-\/1 + o+ d, for TM waves. (15)
a (ka)?
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Note that (14) holds exactly for TE waves and approximately
for TM waves.

The unperturbed state in this case is the parabolic-index
distribution

2o(x) = (gx)*
The unperturbed solutions are [19]

buo = (9/k)2n + 1)

1 x2 (x)
» =expl—-—) H, {—],
D,0(x) P( ZSO) A

where H, is a Hermite polynomial of nth degree. The
perturbed solutions are determined only by inserting the
solution of the related equation into (8) and using (17).

(16)

So = 1Vkg (17)

A. First-Order Solutions of (11)

To solve the nonlinear differential equation (11) under
the first-order approximation, we introduce the first-order
quantities

Ab, = b,y — by
Ay(x) = p(x) — x
Ax(x) = x1(%) — xo(x)
= a(gx)*. (18)

Equation (11) is expressed in terms of (18) and is approx-
imated by the first-order equation

mn

Ay (x) + 2[bao — 20(0)] AY'(X) — xo'(x) Ap(x)

2k2
= Ab, — Ax(x). (19)

It is possible mathematically to obtain the rigorous
solutions of (19) even if the unperturbed state is chosen
arbitrary. The detailed derivation is given in Appendix I.
The results are

Ab, = fw Ax(x) f(x) dx / fw Jx) dx

_ (2)2 a3 @n? 42+ 1) (20)

k

Ay(x) = 2k f dtj};((x; { fo [Ab, — Ax()1£i(s) ds}

I
IO
It must be pointed out that, although the present method
differs from the variational method, the first-order approach
in this section yields the same result for Ab, [see (20)].
Calculation of (21) is performed integrating by parts.
This is tedious, but the results are simple as listed in Table L.
A plot of the normalized values (4, = k Ay(x)/Sog%)
versus x/S, (= &) is in Fig. 3. The transverse field distribu-
tions computed for « = 500, g/k = 2 x 107* (see Fig. 4)
are plotted in Fig. 5 (a)~(d) (solid curves). The short-dash
curves are unperturbed field distributions (¢ = 0). For

D,0*(x)). (21

(%) =
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TABLE 1
FUNCTIONS 4,(€) = k Ay(x)/Soga; € = x/Se

hy(E) R RT3
b (§) ¥ e )
ny(¥) 28 B B nm
(%) LT R SPT R(
B, (§) - 29 388, By Tt aeda) e
ng(8)| -0, 27 12485, LS, P agh208%19)F @)

28 2 2
F(§)= e fo et at = £ - %E‘-ﬁ %gs-

1 3

1
=5 *t ¥ &+
2 4§3 8

0 2 4 X/So

Fig. 3. A plot of 4,(&) = (k/ga)(Ay[So); & = x[So.

1000

0.999

099

5x10°
ax

Fig. 4. Normalized parabolic-index distribution with fourth aber-
ration. « = 0 unperturbed.

comparison, the power-series solutions? are given in the
figure (dot-long-dash curves). '

B. Second-Order Formula for Ab,

The first-order equation (19) can be extended to the
second-order expression in a similar manner. Such an

2 The power-series solutions were obtained from the wave equation
by means of expansion, initially giving the first-order approximate
value of Aby for a fundamental mode, and the WKB values of Ab,
for higher order modes. For more precise treatment, the reader is
referred to Dil and Blok [20].

2
7'5'-3§
15

1687

expression (Appendix II) is available for calculation of the
second-order values of Ab,. To explain the procedure of
calculation, we use the notation Ay, ...(x) defined by (A4).

As is seen from the definition, Ay, ,..ci(%) is the corrective
term that involves the first-order solution of Ay(x) and the
first-order value of Ab,. Thus Ay, ..:(x) is a known
quantity.

The second-order equation for Ay(x) [see (A3)] has the
same form as (19) if Ay(x) in (19) is replaced by Ay(x) —
AYcorrecd(X). This means that the previous procedure de-
veloped in the first-order analysis can be applied to the
present case by this replacement. When this is done in (20),
we obtain the second-order formula for Ab,

([ proseoas - [ [

+ 100" ()(AY)* = 3[bso — %(x)](Ay')?

Ab, (ay"y?

+ 340'x) Ay Ay’ + [Ab, — A()] Ay']

) dx) / | : £(x) dx @)

where AYomect(X) I8 rewritten in terms of the first-order
solution of Ay(x).

A manipulation is made to simplify the calculation of
(22) (Appendix III). As a result, we obtain ‘

2 3
Ab, = (%) a3(2n2‘+ 2n + 1) — (%) o?

|7 T
[64 @n + 1 + = @n + 1)]. (23)

The first part of (23) is the previous result obtained by the

first-order approximation and the second part the corrective
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Field distributions versus x/Sq. — -~ —
(a) Fundamental mode (n = 0).(b) Second mode (z = 1). (c) Third mode (2 = 2). (d} Fourth mode (n = 3).

Unperturbed

Pertur

(CY)

bed. — « — + — Power-series solutions.

TABLE 1I
VALUES OF k, = (k/g)* Ab,/« FOR gafk = 0.1
n o 1 2 3
2nd order (WKB) 0.3484 2.658° 6.055 9.264
Exact (WKB) 0.3517 2.854 7.306 13.372
1st order (V.M) 0.7500 3.750 9.750 18,750
2nd order (Eq.(23))] 0.6188 2.719 5.906 8.906

term. To check the validity of (23) for large n, Ab, is cal-
culated using the WK B method [refer to (29)] by the second-
order approximation

2
a6, WB) = (%) a2 @n + 20+ 3

- (%)3 2 17 o @n+ D% @4

Obviously, both agree for higher order modes, but not for
lower order modes. The normalized values x, = (k/g)* Ab, /o
derived from various methods are compared in Table 1L

C. Other Approximations

Before ending this section, we present the other ap-
proaches for (11) to clarify the features of this method.

1) Ay"(x)[2k® ~ 0 in (19): This assumption is reason-

able when the index variation is sufficiently smooth. Then
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the solution of (19) is
1 * Ab, — Ax(1)
dt
2Vbyo — 1o(x) Jo Jb,,o — 1o()

- (%) %S, [% (Sio) + 13 @n+ 1) ( S())]. (25)

The value of Ay(x) must be finite at the turning point x;
(the point such that b,; — xo(xy) = 0), whereas the factor
(byo = Xo(x))~1?/2 on the right-hand side of (25) becomes
infinite at x;. This means that the value of the integral in
(25) must vanish at x;. Namely,

AX(t) XT dt‘
Ab, = | =t T
f Vb — 16(2) t/ L \/b,.o,— Xo(?)

—zoc(k) @n* + 2n + 3).

Ay(x) =

(26)

It is remarkable that (26) agrees with the first-order result
derived by the WKB method [refer to (24)]. It can also be
proved that (21) tends to (25) as x increases. Therefore, for
higher order modes, the first-order results (20) and (21)
agree well with (26) and (25), respectively.

2) \/ y (l/\/ ¥)" =~ 0 in (11): This assumption is also
reasonable for weak mhomogeneltles Then (11) can be
written as

f Vb ) dx
0

y(x) )
- f oo = 700 dy
1]
1.7 C ) T —
= \/% @n + 1)f V1= yy2d
0

where y; denotes the turning point (= SO\/ 2n + 1) [10],
[19] of the parabolic-index medium. Equation (27) must
be satisfied over the entire region including the oscillatory
region | y| < yr and the damped region |y} > Yr- Use of

dyldx = b,y — 11V byo — 2o[¥(x)] leads (8) to

o= P o[ 170 15]
, (28)

The propagation constants are determined by setting x =
xr and y = p; in (27) where x7 is the turning point of the
perturbed medium (b,; — x,(x7) = 0)°

xXT — yr
Vb — 1) dx = f b = 7000) d
0 . 0

@7

i ,
=—(2n + 1). 29)

4k( ) | (29)
This is the Bohr-Sommerfeld condition [11] formulated
by Kramers [6]. Since y(x) and x are related under the
condition (29) by (27), the term [b,0 — o[ ¥(*)11/[bs1 —

%1(x)] does not diverge at the turning point; there is no .

singularity in (28). Hence (28) is applicable over the entire
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region. Note that the range of application for the WKB
asymptotic solution is restricted to the oscillatory region
[11].

V. DiscussioNs

The problems of wave propagation for TE and TM
waves have been dealt with simultaneously. Both solutions
have been obtained within the same accuracy. The propaga-
tion constants of TM waves calculated from (23) include
the first-order result obtained by Marcuse [19] and Ghatak
and Kraus [18].

For general index distributions, it is possible to make
use of the formulation presented in Section IV. The unper-
turbed state can also be chosen arbitrary under the assump-
tion of even index distribution, as mentioned before.

Higher order approaches may be available for more
accurate analyses in different ways as follows.

1) Retain the unperturbed state and solve the related
equation iteratively as in the second-order derivation for
Ab,,. '

2) Insert the first-order result just obtained into the
unperturbed state, calculate the second-order solutlons and
repeat this 1terat1ve procedure.

It is worth mentioning that although this paper is not
concerned with the wave propagation of higher order
modes, the field expression (28) just derived gives the
advantage of plotting the field distributions of such modes
in comparison with the asymptotic -expressions [3]-[8]
obtained by the conventional asymptotic methods. The
propagation ‘constants, however, are similar to those
derived by asymptotic expansion. Therefore, the present
method does not have the advantage of obtaining more
accurate ré_sults for propagation constants of higher order
modes.

V1. CONCLUSION

A perturbation method has been proposed to determine
the propagation constants and the field distributions of
lower order modes in inhomogcneous media. Compared
to current methods, the proposed method is useful for:
1) relatively strong perturbation; 2) obtaining analytic
solutions; and 3) plotting field distributions over the entire
region.

The problems of TE and TM wave propagations in a
near parabolic-index medium have been solved. The first-
order field functions and the second-order propagation
constants have been obtained.

ApPENDIX T
DERIVATION OF (20) AND (21)

Multiplying both sides of (19) by f,(x) and integrating by
parts over the interval [ —o0,00] results in

|7 4ty - 00 ax

2k2 Lfa A" + fi" Ay = fi AY'

+ 4k (bao — X0 fu AVIZ o, D,0%(x))

(A1)

(%) =
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where the relation f,"/2k? = —2(n,, — Yo)f) + Xof, is
used. The Ay will increase at most with algebraic growth,
while f, decreases exponentially. Hence, the right-hand
side of (A1) vanishes. This equation is alternatively written
as (20). ‘

The (21) was obtained by trial; the validity was proved
by straightforward substitution into (19). The (21) satisfies
the conditions

1) An odd function of x

2) Ay(x) - 0(x*) asx — 0. (A2)

The first is required from a physical standpoint. The second
is the normalization condition with which the magnitude
of the perturbed field function is normalized at the origin
(x = 0) to that of the unperturbed one.

Another possible derivation of (21) is to use the Wronskian
technique [20] developed for ordinary differential equations.
A detailed and instructive interpretation for this technique
is given in [20]. According to the Wronskian analysis, the
solution satisfying (A2) can be written in the form

Ay(x) = f TG O[Ab, — AgtY] dt (A1)

0

where G, is the one-sided Green function

G,0x) = K0 f i fij))z.

It can easily be proved that (21) is equivalent to (A.2.1)
when Ab, is given by (20) (the proof is omitted here).

ArpeEnDIX 1T
SECOND-ORDER EQUATION OF (11)

Use Vy' (INYY = =A"2 + Ay Ay"[2 + 3(Ay")*/4
and 2 = 1 4+ 2 Ay’ + (Ay')%. Then we obtain

LAy + 2t — 2601 AV ) — 20'(%) Av(x)

2k?
= Abn - AX(X) + AXcorrect(x) (A3)
where Ay orrect(X) is the second-order corrective term
Afoorrect(X) = 30" ()(AY)? + 20 (x) Ay Ay

- [bnO - Xo(x)](AJ”)Z
1 1 "
+ 2—];3(AyAy + 2 A",

The first-order solution of Ay obtained is substituted into
A eorrect(X). Hence, using (19), we can rewrite

A 3 ” i ”
AXcorrect(x) = 4_k'5 (Ay )2 + %XO (x)(Ay)Z

’ = 3[byo — 2o)IAY) + 3x0'(x) Ay AY'

+ [Ab, — Ax(x)] AY'. (Ad)
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APPENDIX ITI
CALCULATION OF (22)

~ The first-order solutions (21) are too complicated to be
inserted into (22). Instead, we used

v = ()5 (5 + on e 0 ()

Although (A5) does not satisfy the second condition of
(A2), (A5) is also a solution of (19). As mentioned in
Appendix I, the second condition is not essential for
calculation of (22), because the propagation constants are
independent of the normalization of field magnitude.
Therefore, use of (AS) for (22) leads to a correct result.
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Slow-Wave Propagatlon Along Variable
Schottky-Contact Microstrip Line

DIETER JAGER

Abstract—Schottky-contact microstrip lines (SCML) are a special
type of transmission line on the semiconducting substrate: the metallic-
strip conductor is specially selected to form a rectifying metal-semi-
conductor transition while the ground plane exhibits an ohmic
metallization. Thus the cross section of SCML is similar to that of a
Schottky-barrier diode. The resulting voltage-dependent capacitance
per unit length causes the nonlinear behavior of such lines.

In this paper a detailed analysis of the slow-wave propagation on
SCML is presented, including the effect of metallic losses. Formulas
for the propagation constant and characteristic impedance are derived
and an equivalent circuit is presented. Conditions for slow-mode behavior
are given, particularly taking into account the influence of imperfect
conductors and defining the range of many interesting applications.
Experimental results performed on Si-SCML are compared with theory.

I. INTRODUCTION

UE to particular applications in microwave in-
tegrated circuits, microstrip lines on semiconductor
substrates have been thoroughly investigated both in
theoretical and experimental works during the last few
years. The Schottky-contact microstrip line (SCML) is a
special form of microstrip’ line on a semiconducting sub-
strate: the cross section [Fig. 1(a)] is similar to a Schottky-
barrier diode; i.e., the stripline forms a rectifying
metal-semiconductor transition to the chip with a large-area
ohmic-contact back metallization. At the Schottky-barrier
contact a depletion layer-arises, the depth, of which depends
strongly on the applied voltage. Thus the most interesting
features of SCML’s are caused by this voltage-dependent
depletion-layer capacitance per unit length. Two modes of
operation may be distinguished: the large-signal behavior,
which is characterized by nonlinear wave propagation, and
the small-signal properties, which are determined by bias-
dependent transmission-line parameters.
The wave propagation on SCML’s has been investigated
recently, leading to several fundamental results: large-
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signal operation leads to distributed harmonic frequency
generation and the possibility of parametric amplification
[1], [2]- Under small-signal conditions a slow-wave
propagation occurs, and the propagation constant and
characteristic impedance may be changed by an external
dc bias [3], [4]. In particular, it has been verified that bias-
dependent phase delay gives rise to possible applications
of SCML in variable IC microwave components, such as
resonators, delay lines, phase shifters, or tunable filters
[SI-L7]. |

To a certain extent the SCML resembles the microstrip
line, -which serves as the electrical-interconnection pattern
in IC technology on MOS or MIS systems where an oxide
layer insulates the semiconductor wafer from the metallic
conductors. The high-frequency behavior has been in-
vestigated by several workers, since the propagation delay
imposes a limitation upon signal velocity [8]-[11]. In-
troducing the voltage-dependent capacitance of the MIS
system, a variable (nonlinear) MIS microstrip line results
[12], [13]. The fundamental theoretical work on wave
propagation along such transmission lines has been done
by Guckel et al. [8], assuming perfect conductors and a
large ratio r = w/l of strip width w to substrate thickness .

Until now an accurate calculation of the influence of
imperfect metallic conductors has been neglected in
theoretical analysis. The experimental results, however,
show large deviations from theory, especially in the lower
slow-mode region [4], [11] which exhibits the most in-
teresting features for possible applications. The efficiency
of harmonic-frequency conversion and parametric ampli-
fication in nonlinear SCMIL depends strongly on the
metallic losses [1], [2], and the phase delay of the variable
SCML is influenced by the additional attenuation. In this
way, the influence of the metallic losses has become a
central problem in the discussion of possible practical
applications. -

In this paper, a more detailed analysis of small-signal
slow-wave propagation along variable SCML is presented,
including the effect of imperfect conductors. The treatment



