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A Perturbation Method for the Analysis of Wave
Propagation in Inhomogeneous Dielectric

Waveguides with Perturbed Media
MASAHIRO HASHIMOTO, MEMBER, IEEE

Abstract—This paper presents a perturbation method for determining
the modes and the propagation constants of TE and TM waves in in-
homogeneeus dielectric waveguides whose index distributions depart

from well-known profiles; e.g., a parabolic profile for which exact

solutions can be obtained. Applying the variable-transformation tech-

nique to the wave equations, the wave-equation problem is transformed

into the related-equation problem. The approximate solutions of the

wave equations are obtained solving the related equation, The method

is applied to the analysis of lower order mode propagation in a near-
parabolic-index medium. The first-order field functions and the second-
order propagation constants are given.

I. INTRODUCTION

T

HE PROBLEM of studying the behavior of electro-

magnetic waves in inhomogeneous media has been of

great interest chiefly from mathematical and physical

standpoints [1]-[6]. Later a number of methods [7]-[10]

were developed to analyze this problem or the equivalent

quantum-mechanics problem, most of which are based on

the asymptotic expansion method [11] analogous to the

Wentzel [3]-Kramers [6]-Brillouin [4], [5] (WKB)

method, and these methods have been found to be very

useful for weak inhomogeneities.
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Recently, a great variety of refractive-index distributions

were used to realize self-focusing optical waveguides. Some

of these distributions are not weakly inhomogeneous; the

index variations within the distance of a wavelength are

relatively rapid. In applying such media to single or quasi-

single mode waveguides, it is necessary to analyze the

propagation characteristics of lower order modes by

suitable methods.

Kurtz and Streifer [8] have applied McKelvey’s asymp-

totic method [7] to the problem of lower order mode

propagation, and have found the solutions inaccurate

near the center axis of the waveguide. Even if higher order

asymptotic approaches are taken into account, it is im-

possible to improve the accuracy of the solutions near the

center axis [1 1]. To avoid this defect, many authors [12]

have used the variational method with the aid of a com-

puter. However, computational labor will be required for

the straightforward calculations [13], [14].

In this paper, an analytic method is presented to deter-

mine the transverse field functions and the propagation

constants of TE and TM waves subjected to lower order
mode propagation in inhomogeneous media. The method

is based on two techniques. The one is the variable-trans-

formation technique initially presented in nonuniform

transmission-line problems by Berger [15] and later trans-

ferred to the equivalence problem of lenslike media by

Yamamoto and Makimoto [16]. The other is the related
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equation technique developed in physics and mathematics

by Wentzel [3], Gardner et al. [17], and McKelvey [7].

The wave equations for TE and TM waves are trans-

formed into a related equation by introducing a new

variable. The solutions of the wave equations are obtained

solving the related equation with suitable approximations.

The method is applied to the analysis of wave propagation

in a near parabolic-index medium. The transverse field

distributions and the propagation constants are calculated

by first-order and second-order approximations, res-

pectively. The results are discussed in comparison with

those obtained by the WKB method and the variational

method.

11. WAVE EQUATIONS FOR TE AND TM WAVES

The inhomogeneous dielectric waveguide to be analyzed

is two dimensional. The refractive index of the medium

varies only in the transverse direction x, as n(x); n(x) is an

even function of x. The waves propagate along the z

direction and the field variation in the C direction is as-

sumed to be uniform where (x,L,z) is a Cartesian coordinate

system. The field components of TE and TM waves can be

expressed in terms of the electric field Es and the magnetic

field Hg, respectively. The wave equations that Eg and HC

obey are [18]

{82/ax2 + a’/az2 + k,%%)}~$ = o, for TE waves

(1)

{a’./a~2 + a2/az2 + k027z2(x)- ~(x)~l/~tx)lq

“ {Hg/n(x)] = O, for TM waves (2)

where k. is the wavenumber in free space and primes

denote differentiation with respect to x.
We assume the phase variation e-j~”’z for nth mode

(n = 0,1,2,”” -) where ~.l is the propagation constant.

Furthermore, we define

(

~ ~ 1 – (pnl/k)2, for TE waves
ill

~ – (lk/k)2 – (no/k2)[l/n(x)~4 .0, for TM waves

[

1 – [n(x)/n~]’, for TE waves

XI(X) - 1 – [n(x)/nO]2 + [n(x)/k’][l/n(x)]”

– (nO/k2)[l/n(x)]:.0, for TM waves

{
@nl(x)e- h%lz ~ ‘0 for TE waves

H@(x), for TM waves.

(3)

(4)

(5)

Here, no is the refractive index at the z axis (= n(0)), k is

the wavenumber at the z axis (= kono), and XI(x) is a

function of x satisfying X1(0) = O.

Using these quantities, both of the wave equations are

written in the same form

mn~’’(x) + k’[bnl – ~l(x)]mnl(x) = o. (6)

Hence we need only solve this simplified equation subject

to the boundary condition at infinity; i.e., Ool( + co) = O.

n(x)

I
Im--------,---...

,,” %
‘.

, ‘./’ ‘,,’ ‘.,
“

o x
Fig. 1. Index profile. — Perturbed. ------ --- Unperturbed.

Y,
m=3 2

1

F

o x

Fig. 2. A sketch of variable perturbation for ZO(X)= (gx)z and
Ax(x) = a(gx)2~; u and g constants, Ax(x) - x,(x) – xo(x).

HI. VARIABLE PERTURBATION

For special cases when the refractive-index profile has,

for instance, a parabolic shape or a step shape, the rigorous

solutions of(6) can be obtained analytically. We now write

such solutions as @no(x). The subscript O indicates that the

index distribution is in the particular state where the

propagation constants and the transverse field functions

are known. This particular state is chosen to be an un-

perturbed state in the present perturbation problem (see

Fig. 1). The unperturbed equation corresponding to (6) is

@A”(@ + k2i%o – Xo(x)]%o(x) = 0. (7)

For practical cases of interest, the oscillatory behaviors

of the perturbed fields are probably similar to those of the
unperturbed fields. We thus assume the perturbed field

function @.I(x) in the forml

(D”l(X) = [dy(x)/dx] - W“o[y(x)] (8)

where the new variable y introduced is a function of x

(= Y(x)).
The aspect of y(x) is sketched in Fig. 2; y(x) is, in general,

an odd function of x approximately proportional to x.

1 The factor (dy/&) - llZ was taken so that the first derivative of
@nomight be removed in (9).
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The deviation ofy(x) from x is caused by the perturbation.

To inspect such a deviation, we first substitute (8) into (6)

using the differential formula

d2/dx2 + kz[b~l – xl(x)]

= (dx/dy)-2{82/@2 - [(d2x/dy2)/@x/dy)] 8/?Y

+ k2(dx/dy)2[b.1 – Xl(x)]}.

Then

@no’’(y) + {x’’’/2x’ – 3(x’’/)2)4/4 + k2x’2

“ [b”, - ~l(x)]}@no(y) = o (9)

where the primes denote differentiation with respect to

y (x = x(y)). The first derivative of @.O(y) does not appear

in (9). This is the reason why we must place, in (8), the

factor

(dy/dx)- 1/2 in front of @.O[y(x)].

In the second step, the variable x of (7) is merely replaced

by y, and the resulting equation is compared with (9).

Then we obtain the nonlinear differential equation

k2{bno – Zo[Y(x)]} = k2x’2{bn1 – XI(X)} - /7 (1//2)”

(lo)

where the relation x“’/2x’ – 3(x’’/)2)4/4 = –& (l/J:)”

is used. Alternatively, one may write (10) as

k’{b.o – Xo[y(X)]}y’2 = k’{bnl – xl(@} + Jj (l/J;)”.

(11)

This is the related equation to be solved instead of the wave

equations.

In the next section, we present several approaches for

(11). For the sake of clarity, the application is restricted to

a near parabolic type of profile. The formulation presented

there is, however, applicable to the general classes of index

distribution.

IV. APPLICATION

We apply the method to the near parabolic-index medium

‘(X’=”’JJ1-w’ -“2(Y
where 8, a, and u are constants.

From (3), the propagation constants are defined as

(p,,,~dl -41, for TE waves

kdl – bnl – d/(ka)2, for TM waves.

Also from (4)

X1(4 = (9X)2 + 4944

where g is defined as

(12)

(13)

(14)

(15)

561

Note that (14) holds exactly for TE waves and approximately

for TM waves.

The unperturbed state in this case is the parabolic-index

distribution

Xo(x) = (9X)2. (16)

The unperturbed solutions are [19]

b.. = (g/k)(2n + 1)

“’o(x)‘e’+%)‘+)’ ‘0=l’JZ“7)
where H. is a Hermite polynomial of nth degree. The

perturbed solutions are determined only by inserting the

solution of the related equation into (8) and using (17).

A. First-Order Solutions of (11)

To solve the nonlinear differential equation (11) under

the first-order approximation, we introduce the first-order

quantities

Ah z b~l – bno

Ay(x) s Y(X) – X

Az(x) - XI(X) – ~o(x)

= U(gx)q. (18)

Equation (11) is expressed in terms of (18) and is approx-

imated by the first-order equation

~ Ay’’’(x) + 2[b.o – ~o(x)] Ay’(.x) – ~o’(X) Ay(x)

= Ab. – Ax(x). (19)

It is possible mathematically to obtain the rigorous

solutions of (19) even if the unperturbed state is chosen

arbitrary. The detailed derivation is given in Appendix I.

The results are

J
Ab. = m &(x)fi(x) dx

/J
m &(x) h

-CO —03

. ();2a:(2n’+2n+l) (20)

“(x)=2k2J:;’-{J:’Ab~-A’(s)’fi(s)ds
“u )x ds

,f~’
(L(x) = Qnolx)). (21)

It must be pointed out that, although the present method
differs from the variational method, the first-order approach
in this section yields the same result for Abn [see (20)].

Calculation of (21) is performed integrating by parts.

This is tedious, but the results are simple as listed in Table I.

A plot of the normalized values (Am - k Ay(x)/SOgct)

versus x/S. (- ~) is in Fig. 3. The transverse field distribu-

tions computed for a = 500, g/k = 2 x 10-4 (see Fig. 4)

are plotted in Fig. 5 (a)-(d) (solid curves). The short-dash

curves are ‘unperturbed field distributions (LY= O). For
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2ft2

JF(t)= e-; ~ e dt = f - ;f3+ ~f5- &7 . . . . . . .7.5.3

._A_+.L+ -l+ -AL
2f *$3 &5

. . . . . . .
16$7
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Fig. 3. A plot of h.(<) = (k/ga)(Ay/So); & ~ x/SO.

h
1.000
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a =500 Q .0
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5X102

9x

Fig. 4. Normalized parabolic-index distribution with fourth aber-
ration. a = O unperturbed.

comparison, the power-series solutions2 are given in the

figure (dot-long-dash curves).

B. Second-Order Formula for Ab.

The first-order equation (19) can be extended to the

second-order expression in a similar manner. Such an

2 The power-series solutions were obtained from the wave equation
by means of expansion, initially giving the first-order approximate
value of AbO for a fundamental mode, and the WKB values of A!.
for higher order modes. For more precise treatment, the reader M
referred to Dil and Blok [20].

expression’ (Appendix II) is available for calculation of the

second-order values of Ah.. To explain the procedure of

calculation, we use the notation AXCO,,.c@) defined by (A4).

As is seen from the definition, AXCO,,.C,(X)is the corrective

term that involves the first-order solution of Ay(x) and the

first-order value of Ah.. Thus AZCOr,.Ct(X) is a known

quantity.

The second-order equation for Ay(x) [see (A3)] has the

same form as (19) if Az(x) in (19) is replaced by Ax(x) –

AXCO,,,C,(X). This means that the previous procedure de-

veloped in the first-order analysis can be applied to the

present case by this replacement. When this is done in (20),

we obtain the second-order formula for Ab.

{f
Ab. = “

J[

m
AX(x)fn(x) dx – ~ (Ay”)2

—m _ ~ 4k2

+ +XO’’(X)(AY)2– 3[bno – Xo(x)](fiy’)2

1
+ 3X0’(X) Ay Ay’ + [Ah. – Ax(x)] Ay’

1

. A(X) dx
}IJ

m L(X) dx (22)
—w

where AXCO,,.Ct(X) is rewritten in terms of the first-order
solution of Ay(x).

A manipulation is made to simplify the calculation of

(22) (Appendix III). As a result, we obtain

o 0Ah. = ~2u~(2n2+2n+l)– ~3ct2

[ 1. ~(2n+l)3+~(2n+l) . (23)

The first part of (23) is the previous result obtained by the

first-order approximation and the second part the corrective
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Fig. 5. Field distributions versus x/So. --–– - ––- Unperturbed. — Perturbed. — . — . — Power-series solutions.
(a) Fundamental mode (n = O). (b) Second mode (n = 1). (c) Third mode@ = 2). (d) Fourth mode (n = 3).

TABLE II
VALUSSOF x,, - (k/g)z Abn/a FORga/k = 0.1

n
~

o I 1 I 2

2nd order (WE) 0.3484 2.658 6“.055

I Exact (wKB) 0.3517 2.854 7.306

I I I

1A order (V. M) 0.7500 3.750 9.750

1 1 I

2nd order (Eq. (23)) 0.6188 2.719 5.906

3

9.264

13.372

18.7.50

8.s06

term. To check the validity of (23) for large n, Ab. is cal- Obviously, both agree for higher order modes, but not for
culated using the WKB method [refer to (29)] by the second- lower order modes. The normalized values K. - (lt/.g)2 Ab.ia

order approximation derived from various methods are compared in Table II.

C. Other Approxitiations

Before ending this section, we present the other ap-..-.
preaches for (11) to clarify the features of this method. -

()

3 217
– ; u ;4 (2n + 1)3, (24) 1) Ay’’’(x2k2k2 H O in (19): This assumption is reason-

able when the index variation is sufficiently smooth. Then
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the solution of (19) is

Ay(x) =

.

The value of Ay(x) must be finite at the turning point XT

(the point such-that b.. – xo(x~) = O), whereas-the facto;

(bno – Xo(x)) – “2/2 on the right-hand side of (25) becomes

infinite at x=. This means that the value of the integral in

(25) must vanish at XP Namely,

Ab~ =
J ~ ~b.;:;o(t) /J

dt ‘=
dt

O Jbno - Xo(~)

3

()
~’ 2(2n2 + 2n + *).——.

4a k
(26)

It is remarkaMe that (26) agrees with the first-order result

derived by the JVKB method [refer to (24)]. It can also be

proved that (21) tends to (25) as x increases. Therefore, for

higher order modes, the first-order results (20) and (21)

agree well with (26) and (25), respectively,

2) ~~ (1/d~)” = O in (II): This assumption is also

reasonable for weak inhomogeneities. Then (11) can be

written as

J
x db., - XI(X) dx
o

J

y(x)

.
ho - XO(Y) dy

o

‘J:(2n+l)JITJ1‘y2’y’’2dy’27)
where y~ denotes the turning point (= So~2n + 1) [10],

[19] of the parabolic-index medium. Equation (27) must

be satisfied over the entire region including the oscillatory

region Iyl e y; and the damped region Iyl > y~. Use of

dy/dx = J~nl - X1(x)/Jbno – Xo[y(x)] leads (8) to

q(x) =
[ 1 ‘xd-%w4ab.. – Xo[y(x)] 1/4

b.l – X1(X)

(28)

The propagation constants are determined by setting x =
x= and y = Yr in (27) where XT is the turning point of the

perturbed medium” (b., – Zl(x=) = O)

J
‘“ Jb.l - XI(X) dx =
o

~:~)dy

= & (2n + 1), (29)

This is the Bohr-Sommerfeld condition [11] formulated

by Kramers [6], Since y(x) and x” are related under the

condition (29) by (27), the term [b.. – Zo[y(x)]]/[bnl” –

xl(x)] does not diverge at the turning point; there is no
singularity in (28). Hence (28)” is applicable over the entire

region. Note that the range of application for the WKB

asymptotic solution is restricted to the oscillatory region

[ii].

V. DISCUSSIONS

The problems of wave propagation for TE and TM

waves have been dealt with simultaneously. Both solutions

have been obtained within the same accuracy. The propaga-

tion constants of TM waves calculated from (23) include

the first-order result obtained by Marcuse [19] and Ghatak

aid Kraus [18].

For general index distributions, it is possible to make

use of the formulation presented in Section IV. The unper-

turbed state can also be chosen arbitrary under the assump-

tion of even index distribution, as mentioned before.

Higher order approaches may be available for more

accurate analyses in different ways as follows.

1) Retain the unperturbed state and solve the related

equation iteratively as in the second-order derivation for

Ah..

2) Insert the first-order result just obtained into the
unperturbed state, calculate the second-order solutions, and
repeat this iterative procedure.

It is worth mentioning that although this paper is not
concerned with the wave propagation of higher order
modes, the field’ expression (28) just derived gives the

advantage of plotting the field distributions of such modes

in “comparison with the asymptotic expressions [3]-[8]

obtained by the conventional asymptotic. methods, The

propagation constants; however, are similar to those

derived by asymptotic expansion. Therefore, the present

method does not have the’ advantage of obtaining more

accurate results for propagation constants of higher order

modes,

VI. CONCLUSION

A perturbation method has been proposed to determine
the propagation constants and the field distributions of
lower order modes in inhomogeneous media. Compared
to current methods, the proposed method is useful for:
1) relatively strong perturbation; 2) obtaining analytic
solutions; and 3) plotting field distributions over the entire
region:

The problems of TE and TM wave propagations in a

near parabolic-index medium have been solved. The first-

order field functions and the second-order propagation
constants have been obtained.

APPENDIX I

13ERIVAT10N OF (20) AND (21)

Multiplying both sides of (19) by~.(x) and integrating by

parts over the interval [– CO,CO] results in

([
‘.?3

Ab. – Ax(x)]fi(x) dx

= -& [L Ay” + J; Ay -f; Ay’

+ 4k2(bn0 – xo)fn AY]8 ~, (A(x) = @no’(x))

(Al)
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where the relation f.’’’/2k2 = -,2(n.o – ~o)fn’ + Xo’fm is

used. The Ay will increase at most with algebraic growth,

while f. decreases exponentially. Hence, the right-hand

side of (A 1) vanishes. This equation is alternatively written

as (20).

The (21) was obtained by trial; the validity was proved

by straightforward substitution into (19). The (21) satisfies

the conditions

1) An odd function of x

2) Ay(x) ~ 0(x3) as x ~ O. (A2)

The first is required from a physical standpoint. The second

is the normalization condition with which the magnitude

of the perturbed field function is normalized at the origin

(x = O) to that of the unperturbed one.

Another possible derivation of (21) is to use the Wronskian

technique [20] developed for ordinary differential equations.

A detailed and instructive interpretation for this technique

is given in [20]. According to the Wronskian analysis, the

solution satisfying (A2) can be written in the form

Ay(x) =
J

x Gn(x,t)[Abn – Ax(i)] dt (A2.1)
o

where G. is the one-sided Green function

Gn(x,t) = kzfi(x)fi(t)
(J )

‘dsz

,m ‘

It can easily be proved that (21) is equivalent to (A.2.1)

when Abn is given by (20) (the proof is omitted here).

APPENDIX II

SECOND-ORDEREQUATION OF(11)

Use Jj (1/N@” N – Ay’”/2 + Ay’ Ay’”/2 + 3(Ay’’)2/4

and y’z =

~ Ay’’’(x)
2k2

+ 2 Ay’ + (AY’)2. Then we obtain

+ 2[b.o – ~o(x)] &’(x) – %0’(X) AY(x)

= Abu – Ax(x) + &correCt(x) (A3)

where AXCO,,,ct(x) is the second-order corrective term

AXCO,,.C,(X) = ~Xo’’(X)(Ay)2 + 2Z0’(X) Ay Ay’

- [b.. - Xo(x)](Ay’)2

+ ~ (Ay Ay’” + : Ay’’2).

The first-order solution of Ay obtained is substituted into

AXCO,,,C,(X).Hence, using (19), we can rewrite

AXCO,,.C,(X)= -& (Ay”)2 + ~Xo’’(X)(&)2

– 3[b.o – Xo(x)]@y’)2 + 3X0’(X) Ay Ay’

+ [Ah. – Ax(x)] Ay’. (A4)

APPENDIX 111

CALCULATION OF (22)

The first-order solutions (21) are too complicated to be

inserted into (22). Instead, we used

‘y(x)=(i’s”[%)3+;(2”+1%)1 ‘A’)
Although (A5) does not satisfy the second condition of

(A2), (A5) is also a solution of (19). AS mentioned in

Appendix I, the second condition is not essential for

calculation of (22), because the propagation constants are

independent of the normalization of field magnitude.

Therefore, use of (A5) for (22) leads to a correct result,
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Slow-Wave Propagation Along Variable
Schottky-Contact Microstrip Line

DIETER

Abstract+3chottky-conkct microstrip lines (SCML) are a special

type of transmission line on the semiconducting substrate: the metallic-
strip conductor is specially selected to form a rectifying metal–semi-
conductor transition while the ground plane exhibits an ohmic

metallization. Thus the cross section of SCML is similar to that of a

Schottky-barrier diode. The resulting voltage-dependent capacitance

per unit length causes tbe nonlinear behavior of such lines.
In this paper a detailed analysis of the, slow-wave propagation on

SCML is presented, including the effect of metallic losses. Formulas
for the propagation constant imd characteristic impedance are derived

and an equivalent circuit is presented. Conditions for slow-mode behavior
are given, particularly taking into account the influence of imperfect

conductors and defining the range of many interesting applications.
Experimental results performed on Si-SCML are compared with theory.

I. INTRODUCTION

D UE to particular applications in microwave in-

tegrated circuits, microstrip lines on semiconductor

substrates have been thoroughly investigated both in

theoretical and experimental works during the last few

years. The Schottky-contact microstrip line GSCML) is a

special form of microstrip’ line on a semiconducting sub-

strate: the cross section [Fig. 1(a)] is similar to a Schottky-

barrier diode; i.e., the stripline forms a rectifying

metal-semiconductor transition to the chip with a large-area

ohmic-contact back metallization. At the Schottky-barrier

contact. a depletion layer arises, the depth,of which depends

strongly on the applied voltage. Thus the most interesting
features of SCML’S are caused by this voltage-dependent

depletion-layer capacitance per unit length. TWO modes of

operation may be distinguished: the large-signal behavior,

which is characterized by nonlinear wave propagation, and

the small-signal properties, which are determined by bias-

dependent transmission-line parameters.

The wave propagation on SCML’S has been investigated

recently, leading to several fundamental results: large-
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signal operation leads to distributed harmonic frequency

generation and the possibility of parametric amplification

[1], [2]. Under small-signal conditions a slow-wave

propagation occurs, and the propagation constant and

characteristic impedance may be changed by an external

dc bias [3], [4]. In particular, it has been verified that bias-

dependent phase delay gives rise to possible applications

of SCML in variable IC microwave components, such as

resonators, delay lines, phase shifters, or tunable filters

[5]-[7].

To a certain extent the SCML resembles the microstrip

line, -which serves as the electrical-interconnection pattern

in IC technology on MOS or MIS systems where an oxide

layer insulates the semiconductor wafer from the metallic

conductors. The high-frequency behavior lias been in-

vestigated by several workers, since the propagation delay

imposes a limitation upon signal velocity [8]-[1 1]. In-

troducing the voltage-dependent capacitance of the MIS

system, a variable (nonlinear) MIS microstrip line results

[12], [13]. The fundamental theoretical work on wave

propagation along such transmission lines has been done

by Guckel et UL [8], assuming perfect conductors and a

large ratio r = w/1 of strip width w to. substrate thickness 1.

Until now an accurate calculation of the influence of

imperfect metallic conductors has been neglected in

theoretical analysis, The experimental results, however,
show large deviations from theory, especially in the lower

slow-mode region [4]; [11] which exhibits the most in-

teresting features for possible applications. The efficiency

of harmonic-frequency conversion and parametric amplif-

ication in nonlinear SCML depends strongly on the

metallic losses [1], [2], and the. phase delay of the variable

SCML is influenced by the additional attenuation. In this

way, the influence of the metallic losses has become a

central problem in the discussion of possible practical

applications.

In this paper, a more detailed analysis of small-signal

slow-wave propagation along variable SCML is presented,

including the effect of imperfect conductors. The treatment


